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Error bounds for the Gauss type quadrature formulae Q~, Q;+ I and Q:+ I

(Gauss, Lobatto and Radau formulae) related to the spaces of polynomial spline
functions of degree r - I with equidistant knots are obtained. It is shown that these
quadrature rules are asymptotically optimal in the Sobolev space W'x for all r, and
in W~ (I ~ P ~ Cf)) for odd r. Some inequalities involving the Gaussian nodes and
weights are also established. <C 1995 Academic Press. Inc.

1. INTRODUCTION AND RESULTS

The object of this paper is to study quadrature formulae of the type

n

Q[f] := I aJ(f,;)
;=1

(1.1 )

which serve as estimates for the definite integral

l[f] := f: f<x) dx.
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We consider quadrature formulae which are exact for polynomial splines of
degree r - 1 with equidistant knots i/N (i = 1, ..., N - 1), and which use a
minimal number of function values f( ¢' j)' These formulae are called Gauss
type formulae, related to this space of spline functions.

One of the fundamental questions in the theory of quadrature formulae
is, for a given normed linear space X of functions defined on [0, 1], to
minimize the remainder R := 1- Q with respect to the parameters {G j } 7~ 1
and {¢'i}7=j, i.e., to find

6"n(X):=inf sup IR[fJl.
Q IIfllx",;l

If the quantity 6"n( X) is attained for a quadrature formula QOPI of the type
(1.1), Qopt is said to be the optimal quadrature formula of the type (1.1) for
the space X. Let

w;:= {IE C-l(IR):f1-periodic,flr~ I) abs. cont., IIfr11l p < oo},

W; := {IE C-1[0, 1]:f r
- Il abs. cont., IIf1r11l p < oo},

where

(

j )IIP
Ilfll p := fa If(uW du if 1~ P < 00, and Ilfll72:= sup vrai If(u)l·

UE (0.1 I

The problems of existence and uniqueness of optimal quadrature
formulae for the periodic Sobolev spaces X = W; have been solved by
Motornyi [ 11] for p = 00 and p = 1, r odd, by Ligun [ 10] for p = 1, r even,
and in the general case by lensykbaev [16]. In all these cases the optimal
quadrature formula is the rectangle rule. The exact error constants 6"n (X)
in this case are (see Zensykbaev [16], p. 1070)

Special cases are

for r;::, 1 and 1~p ~ 00.

for odd rand 1~ P ~ 00,

(1.2 )

(1.3 )

for r;::' 1, ( 1.4)
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where B r are the Bernoulli polynomials, lip + l/q, and

(1.5 )

for 1 < p ~ 00

are Favard's constants. For the non-periodic case X = w~, the problems of
existence and uniqueness are also solved (even in a more general setting,
for quadrature formulae that involve derivatives and boundary terms) by
Bojanov [1], [2] (see also Zensykbaev [17]); however, the optimal
quadrature formulae and the corresponding error bounds are not known,
in general. Obviously, gn( W;) ~ @"nUV;), and it is known that

lim gn( W;) = 1
n-oc @"n(W;)

(this follows from Brass [4]; for p = 1, we could not find a reference
concerning this question).

The purpose of this paper is to show that, for the spaces W; with p = 00

or with odd r, the Gauss type quadrature rules related to spaces of spline
functions of degree r - 1 with equidistant knots have the same asymptotic
behaviour as the optimal quadrature rules. In particular, this proves a
conjecture proposed by one of the authors in [12] about asymptotic
optimality of the Gaussian quadrature rules in W:X:" To prove this, we
determine upper bounds for the errors of the Gauss type rules for all
classes W;. These error bounds are also upper bounds for the best error
constants in these spaces (i.e., for @"n(W;)); for other bounds for @"n(W;),
p = 2, 00, see Strauss [13]. We also establish some inequalities involving
the Gaussian nodes and weights.

For r, N EN, define

where 1t r _ 1 denotes the set of all algebraic polynomials of degree strictly
less than r. The dimension of Sr _ I. N is N + r - 1. For N = 2n + 1 - r (i.e.,
n=(dimSr _ I ,N)/2, if dimSr_I,N is even) there exist unique quadrature
formulae of the type

n
/lGr-r,. ~ _Grl'l:G\
~n LJ J .= L U i J \i;i )

;= 1

n

;=0

(0 < ~f < .. , < ~~ < 1),

(o=¢"~< ... <¢"~= 1),

(i.i)

(1.8 )

which are exact for every function from the space (1.6), called the Gauss
and Lobatto quadrature formulae, related to this space. For N = 2n + 2 - r
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(i.e., n=(dimS r _ 1• N -I)/2, if dimSr _ 1. N is odd) there exist unique
quadrature formulae of the type

n

Q:~ I [f] := L: a~Of(~~o)
;=0

n+1

Q:~ I [f] := 2: a~lf(~{I)
;= I

(1.9)

(l.lO)

which are exact for every function from the space (1.6), and are referred to
as the left and right Radau formulae, related to this space. The Gauss,
Lobatto and Radau formulae are also called Gauss type quadrature for
mulae. (For the existence and unicity of these formulae, see, e.g., [8].)

We state below the main results of this paper. Let

&"( Q, W~) := sup 1/[/] - Q[f] I,
1I1"llIp '" I

and

- {Br(X)
Br(x):= Br(x)-BAI/4)

for odd r

for even r,

for I ~ q < oc; (c r, q = 0 for arbitrary q and odd r). The following theorems
hold for I ~p~ 00 (l/p+ I/q= I) and r~ 1.

THEOREM 1.1. For the error of the Gauss quadrature formula (1.7)
related to Sr_l, N with N = 2n + I - r, there holds

with equality for r = I only.

THEOREM 1.2. For the error of the Lobatto quadrature formula (1.8)
related to Sr _I. N with N = 2n + I - r, there holds

with equality for r = I, 2 only.
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THEOREM 1.3. For the error of the Radau quadrature formulae (1.9) and
(1.10) related to Sr _ I. N with N = 2n + 2 - r, there holds (with i = 0, 1)

with equality for r = 1 only.

For q = 00, the terms ( ... )l/q have to be replaced by 1. Some special
cases of the constants involved above are the following ones: For arbitrary
r, there holds IIBr III = Krf(2n)', with Kr as in (1.5), and for even r, there
holds IIBr ll l =4IBr + I (l/4)1 and cr,1=(_l)r/2-IIBr(I/4)//IIBrlll; esp.,
c2,1=1/3 and C4. 1= -7/75.

As an immediate consequence of ( 1.2H 1.4) and the above theorems, we
obtain the following result about the asymptotic optimality of the Gauss
type formulae.

THEOREM 1.4. The Gauss type quadrature formulae related to Sr-l, N are
asymptotically optimal in W~for r ~ 1 ifp = 00, and for all p with 1~ p ~ 00

if r is odd. More precisely, for these values of rand p, there holds

with * standing for G, L, RO and RI.

For other cases where the Gauss type formulae are asymptotically
optimal, see Section 4. Up to now, we have considered the error only, but
it is also possible to give estimates for the weights of these quadrature
formulae.

THEOREM 1.5. With * standing for G, Land RO, and with the corre
sponding N, the Gaussian weights (an and the Gaussian nodes (~n satisfy
the following inequalities:

(a) for odd r ~ 3,

" * k-lt.. a >--
O<s;~,~ <kiN v N

" * 1+1t.. a <--
o<s;~: <s;IIN v N

for k = 1, ..., N,

for 1= 0, ..., N - I;

(1.11)

(1.12)
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(b) for even r;;:' 2,

373

2k-3
" a*>---L. v,,- 2

o,,;~: «2k-Il/(2N) N

" * 21 + 1L. av ~--

0,,; ~,~;;. (2/- 11!(2NI 2N

for k = 2, ..., N,

for I = I, ..., N - 1

(1.13)

(1.14)

(equality is possible only in the Lobatto case for r = 2).

Similar inequalities hold for (a~l) and ((;~I). Thee can be derived
from (1.11 )-( 1.14) by taking into account the identity Q:~ 1 [f( . )] ==
Q:~ 1 [f(1 - . )].

In Section 2 we give some definitions and known results, including the
relationship between monosplines and quadrature formulae, the Budan
Fourier theorem for splines and some properties of the Bernoulli polyno
mials. Theorems 1.1-1.5 are proved in Section 3. In Section 4 some
corollaries and concluding remarks are given.

2. PRELIMINARIES

In the following, we assume that r;;:' 2. For r = 1, with the convention
that s(xk ):= (s(x k -) + S(Xk + ))/2 for S E So, Nand k = 1, ... , N - 1, the
Gauss type formulae for splines with equidistant knots are the compound
midpoint rule (Gauss), the compound trapezoidal rule (Lobatto) and a
kind of truncated compound trapezoidal rules in the Radau case.

The basic ingredient of the proofs of our results for r ;;:, 2 is the extension
of the classical Budan-Fourier Theorem for polynomials to splines. Before
formulating this theorem, we recall some definitions, following de Boor and
Schoenberg's paper [3].

For ii:= (ai, ... , an) E W, denote by S-(ii) the number of sign changes in
the sequence a\> a 2 , ... , an, ignorizing zeros in this sequence. In contrast,
S+ (ii) denotes the maximal number of sign changes in this sequence,
provided that the zeros are taken with appropriate signs. Analogously, iff
is a real-valued function on some domain G c IR, then

For a spline function f of degree n with simple knots, Zf'n'( a, b) =
Si:.b)(j(n») denotes the number of strong sign changes ofj<n) in (a, b), and
Zf(a, b) denotes the total number of zeros of f in (a, b), counting their
multiplicities in the way defined in [3].

b40~ \1-6
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THEOREM 2.1 (Budan-Fourier Theorem for Splines). Iff is a polynomial
Jpline of exact degree n on (a,b) (i.e., of degree n withpn)(t)-#Ofor some
t E(a, b)) with finitely many (active) knots in (a, b), all simple, then

Zr(a, b) ~ Zr!",(a, b) + S-(f(a),f'(a), ...,fln~ 1)(a),fIJlI(a +))

-S+(f(b),f'(b), ... ,[In -l)(b),[ln)(r- )),

where [a,r]c[a,b] is the largest interval such that fn)(a+)-#O and
[lnl(r-) -# O.

Remark. The above formulation of the Budan-Fourier theorem is a
slight modification of that given by de Boor and Schoenberg in [3], which
uses a + instead of a + and b - instead of r -. However, as simple
examples show, this may give a wrong result if a> a or r < b. The reason
is an inaccuracy in the second equality of (7), p. 8 in [3]. There, the right
hand side may not be zero, and one has to add correction terms, which
yields

Zf(a, b) ~ ZI'''I(a, b) + S-(f(a),f'(a), ...,fln-ll(a),[lnl(a+))

-S+(f(b),f'(b), ...,fln-ll(b),flnl(b-))

+S-(f(j)(a),flnl(a+ ))

+S-(flk)(b), (_l)n~k[lnl(r- )), (2.1)

where [lJl(a) and pkl(b) are the highest non-zero derivatives at a and b,
respectively. (If all derivatives vanish at a, then replace [lil(a) by 0, and
analogously at b.) The corrected estimate (2.1) is equivalent to the estimate
given in Theorem 2.1.

For a given set L1 = {Xi} ~~-Il (0 < XI < ... < X N_ 1 < 1), we consider the
space of spline functions of degree r - 1 with simple knots belonging to L1:

where X o := 0 and x N : = 1. Sr _ I. Ll is a linear space of dimension N + r - 1
with a basis given by

{I r-I ( )r-I ( )r-I},X, ... ,X ,X-Xl + , ..., X-X N _] + '

where u+ :=max{u, O}.
Next, we recall the connection between quadrature formulae and

monosplines. The quadrature formula Q is said to have algebraic degree of
precision m, if I[f] = Q[f] for each f E7tm, but I[ ( . )m + I] -# Q[ ( . )m + I].
In the following, we always assume that Q has algebraic degree of precision
at least r - 1. For quadrature formulae which are exact for some spline
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space of degree r - I, this is trivially the case. According to Peano's
theorem (see, e.g., Brass [5 J),

for fE W~, (2.2)

where K r (I) = R[ ( . - t )'+- I/( r - 1)! J is the Peano kernel of order r. Clearly,
for t E (0, I),

(2.3 )

or, usmg the identity (x-ty+-l=(-I)'[(t-X)'+-I_(t-X)'-IJ,
equivalently,

According to (2.2),

(2.4 )

o'(Q, W~)= sup IR[fJl = IIKrll q ,

IIJ"llIp~ I

where
I 1
-+-= I.
P q

(2.5)

The function Kr is a monospline of degree r with simple knots
{ (i: (i E (0, I)}. Moreover, it is easily seen that

and

where

for j = 0, ... , r - I - (X

for j = 0, ..., r -I - p,

(2.6)

(2.7)

for ¢"l >0
for ¢", =0'

and p={~
for ¢"n < I
for (n = 1.

Obviously, for fixed r E (0, I), since K r ( r) = R[ (. - r)'/ I/(r - I)! J we
have that Q is exact for the spline f( x) = (x - r y+- I if and only if K r (r) = o.
Therefore, in order that the quadrature formula (1.1 ) have maximal "spline
degree of precision", i.e., that it is exact for a space Sr _ I. A of the highest
possible dimension, it is necessary and sufficient that the corresponding
monospline K r have a maximal number of simple zeros in (0, I). As a con
sequence of the fundamental theorem of algebra for monosplines satisfying
boundary conditions (Karlin and Micchelli [8 J, Theorem 0.1), every
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monospline of the type (2.3 )-(2.4) has at most 2n - r -IX - P simple zeros
in (0, 1), and, conversely, given any 2n - r -IX - Pdistinct points in (0, 1),
say T1 < T2< .,. < T2n-r-rx~p, there exists a unique monospline K r of the
form (2.4), that vanishes at these points and satisfies (2.6)-(2.7). The
corresponding quadrature formula Q is of the type (1.1), and it is exact for
the space Sr-1.d with A={Tj};:\r-rx- p. Clearly, Sr_I.,j has dimension
2n - IX - p, but Q uses only n function values, i.e., Q is a double precision
quadrature formula. If ~ I > 0 and ~ 11 < 1, then this formula is refered to as
the Gauss formula related to the space Sr-1.d; if ~l = 0 and ~n = I, it is
called the Lobatto formula related to Sr-l.d, and in the cases ~l =0 and
~n < 1, or ~ 1 > 0 and ~n = 1, we have the left and the right Radau formulae.
The weights of the Gauss, Lobatto and Radau formulae are always positive
(see [8], Theorem 7.1).

Denote the corresponding r-th Peano kernels by K~ r' K;; r' K:~ andK: 1
r , respectively. According to (2.5), to find error b~unds" one has to

estimate the Lq-norms of these monosplines. We do this by a pointwise
comparison with some modified Bernoulli monosplines.

The Bernoulli polynomials B v are defined recursively by

Bo(x) := I, B~(x) = Bv_l(x), and rBv(u) du = 0 for v?: I.
o

In the next lemma we list some properties of the Bernoulli polynomials,
which will be used repeatedly in the sequel.

LEMMA 2.1.

( .) B ( )= ~ Bv_k(O) k ( 0)
I v X k7:

o
k! x v?:,

(ii) sign B 2v(0) = sign B2v(1) = (-1 r- 1

(iii) B 2v + 1(0) = B 2v + l(n = B 2v + 1(1) = 0

(v?: I),

(v?: 1),

Bd~)=O,

(v) sign B 2v d) = sign B2V(~) = sign B2vW = (-1 r
(vi) sign B 2v + I (~) = -sign B 2v + I W= (-1)"+ I

(v?: 1),

(v?:O).

Note also that x = 1/2 is the unique zero of B 2v + 1 in (0, 1), while B 2v has
two simple zeros in (0, 1), located symmetrically with respect to the middle
of the interval. Denote by B~ the I-periodic extension of Bvl[o, I)' Then B~

is a monospline of degree v with leading term xv/v! and with simple knots
at 0, ± 1, ±2, ... (see (i )-( iv) and the definition of B v).
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3. THE PROOFS

377

To prove Theorems 1.1-1.3, we compare the Peano kernels, K;; r'

K~+l.r' K:~l.r and K:~l,r with properly chosen modified Bernoulli

monosplines K, K, L, and l, which are defined by

K(x)= -(~rB: (~ x)'

K(x) = -(~y B r* (~x+D,

L(X)=(~Y (Br*(~ X+D-BrG)),

l(x)= (~)r (B: (~ x+D -Br(D).

(3.1 )

(3.2)

(3.3 )

(3.4)

We obtain pointwise estimates for the Peano kernels of the Gaussian
quadrature formulae by these modified Bernoulli monosplines, and the
pointwise estimates immediately imply norm estimates. For the con
venience of the reader, and since they may be of independent interest, we
state them in a corollary below. Their proof is a major part of the proofs
of Theorems 1.1-1.3. (They are comparison theorems for monosplines,
related in a sense to Karlin's global improvement theorem, see Karlin [7],
and to comparison theorems for monosplines of Strauss [14], [15]. The
comparison theorems of Strauss can be used to prove some special cases of
the results obtained here, see Theorem 4.1 of [ 14]. But in contrast to these
results, in our case the monosplines on the right-hand sides of the estimates
do not all have maximal number of zeros.)

COROLLARY 3.1. Let K and K be defined as in (3.1 )-(3.2), and Land l
as in (3.3 )-(3.4). Then,for x E [0, 1], the following estimates hold.

(a) Let N = 2n - r + I. The Peano kernels of the Gauss formulae
satisfy

IK;;r(x)l ~ IK(x)1 if r = 4m - I,

IK~r(x)l ~ IL(x)l if r=4m,

IK;; r(x)l ~ IK(x)1 if r = 4m + I,

IK;; r(x)l ~ Il(x)1 if r = 4m + 2.
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(b) Let N = 2n - r + 1. The Peano kernels of the Lobatto formulae
satisfy

IK~+1. ,(x)1 ~ IK(x)1 if r=4m+ 1,

IK~+1.,(x)1 ~ IK(x)\ if r=4m-l,

IK~+ 1,r(X)\ ~ \L(x)\ (( r=4m+ 2,

\K~+ l.,(x)1 ~ 1[(x)1 if r=4m.

(c) Let N = 2n - r + 2. The Peano kernels of the left Radau formulae
satisfy

IK:~l.,(x)i ~ IK(x)1

IK:~l.,(x)1 ~ IK(x)1

IK,~~ 1,r(x)1 ~ IL(x)1

IK,~~ l,r(x)1 ~ 1[(x)1

if r=4m+ 1,

if r =4m-l,

if r= 4m,

if r =4m + 2.

The proofs of Theorems 1.1-1.3 are not essentially different from each
other. For this reason, we give a detailed proof of Theorem 1.1 only, prove
Theorem 1.2 by outlining the differences to the proof of Theorem 1.1, and
sketch the proof of Theorem 1.3.

Proof of Theorem 1.1. The Peano kernel K ~ , is a monospline of degree
r with n simple knots g~;} 7~ 1 in (0, I) and N - 1 simple zeros

i= I, ... , N-1.

Moreover, K~, satisfies

j= 0, ... , r -1. (3.5 )

We consider the cases of odd and even r separately.

Case A: r=2s+ I. In this case N=2n-r+ 1 =2(n-s). Let K and K
be defined as in (3.1) and (3.2). Clearly, K and K are monosplines of degree
r and, in view of the properties of the Bernoulli polynomials of odd degree,

K( r i) = K( r i) = 0, i=O, I, ...,N.

Moreover, K has NI2 - 1 = n - .'I - 1 simple knots in (0, 1), located at Xk =
2klN, k = 1, ... , n - .'I - I, and K has NI2 simple knots in (0, 1), located at
xk = (2k -l)IN, k = 1, ... , n - s.
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The functions g: = K - K ~ rand g: = K- K ~ r are spline functions of
degree r-I with simple k~ots in (0,1) only, namely, {Xk}Z:~-1 u

{¢7}Z~1 for g and {xdZ:~ u {¢7}z=1 for g. We want to apply the Budan
Fourier Theorem to g and g. Therefore, we need the signs of the derivatives
of g and g at y = 0 and y = 1. In view of (3.5), there holds

. (2)r-) (1)
gU l( Y ) = - N B r - ) 2" '

j= 0, ... , r-I,

j = 0, ... , r-I

(3.6)

(3.7)

with y = 0, 1. Now, using the sign properties (ii )-( v) from Lemma 2.1, we
get from (3.6)-(3.7) (with 0"=0, r= 1 for g, but 0">0, r< 1 for g)

S-(g(O), ... , g,r-II(O"+))

= S- (0, ( -I is, 0, ( -I)"' -I, ..., ( -I) I, ( -I )0) = s,

S+(g(1), ... , g,r-I)(r_))

= S+ (0, ( - I is, 0, ( _1)'-1, ... , ( -I )1, ( - I )1) = s,

S-(g(O), ... , g,r-I)(O"+))

= S-(O, ( -I )' -1,0, ( - I y- 2, ... , ( - I )0, *) ~ s,

S+ (g(1), ... , glr- II( r -))

= S + (0, ( - I )"' - I, 0, ( - 1)' - 2, ... , ( - 1)0
, *) ~ s

(the entries marked by * are unknown), and Theorem 2.1 (Budan-Fourier)
implies

and N-l ~Zl((O, 1)~Zl("-I)(O, 1)

(3.8)

(the lower bound follows from the fact that K, K and K~ r have common
zeros at r l' ... , r N _I ). However, it is not immediately clear that the Budan
Fourier Theorem can be applied to g, since g,r-I) vanishes identically near
the end points, and therefore g might not be a spline of extract degree r - 1
(which would mean that gElr r _ 2 ). But for XE(O, 1), there holds
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We observe from (3.9) that g(r - I) has n - s positive, but n negative jumps,
so that they cannot cancel each other out. Thus, g is a spline of exact
degree r - 1. Analogously, for x E (0, I) we have the representation

The identities (3.9) and (3.10) show that g(r-l) and g(r-I) may change sign
from - 1 to + 1 only at the points {x k } Z: ~ - I and {xd Z: ~, respectively.
This, coupled with g(r-I)(o+»O, g(r-I)(l_)<O and g(r-I)(O+)=O,
g(r - 1)( 1- ) = 0, implies

Zgi'-lI(O, I) ~ 2(n - s - 1) + 1 = N - I,

Zgi'-lI(O, 1) ~ 2(n - s) - 1 = N - 1.

Finally, the comparison of (3.11) and (3.12) with (3.8) yields

(3.11 )

(3.12)

Thus, both g and g vanish in (0, I) at the points {rJ ~~-ll only, and all
these zeros are simple zeros. But a simple zero in the sense of [3] is also
a sign change, so that g, g, K, K and K~r change exactly at the rio Hence,
from

sign g(e) = sign K(e) = sign g'(O) = (-1 y,

sign g(e) = sign K(e) = sign f(O) = (-1 )5-1

for sufficiently small e > 0, we obtain

(3.13 )

(3.14 )

sign K(x) = sign(K(x) - K~ r(x)) = (-1 )'+i-1, (3.15)

sign K(x) = sign(K(x) - K~ r(x)) = (-I Y+ i-2 (3.16)

for x E (ri-I' r i), i = I, ..., N (with r0 : = 0, r N : = I). It remains to take into
consideration that for odd r K~ r(e) < 0 for sufficiently small e > 0 (see
(2.4)), to conclude that for odd s Kand K~ r have the same orientation, i.e.,

and for even s

sign K~ r(x) = sign K(x)

sign K~ r(x) = sign K(x)

for XE [0,1],

for x E [0, I].
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Then (3.15) and (3.16) imply

IK: r(x)1 ~ IK(x)1

IK: r(x)l ~ IK(x)1

for all x E [0, 1], if r = 4m - 1,

forall xE[O,l], ifr=4m+I,

with equality sign only for x = f;, i = 0, ... , N. The last inequalities imply

for 1~q ~ 00,

and the calculation of II KII q proves the statement of Theorem l.l for odd r.

Case B: r = 2s. In this case N = 2(n - s) + 1. The monosplines which
will be compared with K~ rare Land L as defined in (3.3) and (3.4). Both
Land L vanish at f; = i;N for i = I, ... , N - 1. Moreover, Land L have only
simple knots in (0, 1), located at

and
4i-3

Y;=W-' i=I, ...,n-s+I,

(3,18 )

(3,17)

j = I, "', r - 1.

j= I, "', r -I,

respectively. Let h := L - K~ rand h := L- K: r' Clearly hand h are spline
functions of degree r - 1. Moreover, h(O) = h(I) = h(O) = h( I) = 0, and, in
view of (3.5),

(
2)r-

j (1)h(j)(O) =h(j)(l) = N Br _j 4 '

(2)r-j (3)h(j)(1)=h(j)(O)= N B r - j :4'

Then, taking into account Lemma 2.1 (v)-(vi), we obtain (with (j" = 0 and
f = I)

S-(h(O), .", h(r-I)(O+)

= S- (0, ( -I Y, ... , (-I )2, ( -I) I, ( -I) I) = S - 1,

S+(h(1), .." h(r-I)(1-»)

=S+(O, (_1)s-l, .." (-1)1, (-1)1, (-1)°) =s,

S-(h(O), ... , h(r-I)(O+)

= S- (0, ( -I Y-I, .." ( _1)1, ( _1)1, ( -1)0) = s - 1,

S+(h(l), .." h(r-I)(l-»

= S+ (0, ( - 1)', .. " ( - 1)2, ( - 1) I, ( - 1) I) = S,
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Now we apply the Budan-Fourier Theorem to obtain

N - I ~ Zj(O, I) ~ Zj"-1)(O, I) - I

However, for x E (0, I)

for f=h, h. (3.19 )

hl'-l)()- I 2n~:( )0 ~ G( f:G)o
X - - 2N - N L. x - Yk + + L. ak x - '" k +'

k~ 1 k~ 1

_ . I 2 1I-S+ 1 11

h l,-1)(x)=--- " (x_y;)o + " aG(x_f:G)o. 2N N L. " k + L. k '" k +,
k~ I k~ I

and, as in Case A, we conclude that hi' - I) and hi' - I) may change sign from
+1 to -1 only at the points {yd;:; and {Jid;:,;+I, respectively. This,
coupled with sign hl,-I )(e) = sign /zi,-1)(I-e) = -I and sign h l,-1)(l-e) =
sign hi' - 1)( e) = I for sufficiently small e > °implies

Z1"-I) ~ 2(n -s) + I = N for f=h, h,

and from (3.19) we infer that hand h have no other zeros in (0, I) except
{'i }~~-II , and the 'i are simple zeros of hand h. As in Case A, we obtain

sign L(x) = sign(L(x) - K~,(x)) = (-I y+i-I,

sign L(x) = sign(L(x) - KG (x)) = (- I )' + i- 2n, r

for xE(ri_l,r i ) and i=I, ...,N. For even r, K~r(e»O for sufficiently
small e > 0. Proceeding as in Case A, we finally obtain

and

IK~ ,(x)1 ~ IL(x)1 if s is even, IK~ r(x)1 ~ IL(x)1 if s is odd,

A calculation of IILll q and IILll q , using elementary properties of the
Bernoulli polynomials, completes the proof of Theorem 1.1. I

Proof of Theorem 1.2. The Peano kernel K~'+ I. r of the Lobatto
quadrature formula (1.8) vanishes at {'i} ~~-/ and satisfies (3.5) for
j = 0, ..., r - 2. Instead of zero boundary conditions for the (r - I )st
derivative we have

(K L )lr-1)(O) = (-I )r+ I a L (K L ),r-I)( I) = (_I)r a L
. n+l,r. . 0' n+Lr 0

(a~ = a~, by symmetry). For convenience's sake we use the notation from
the proof of Theorem 1.1.
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Case A: r = 2s + 1. We compare K L n. r with the monosplines (3.1)
(3.2), and set g:=K-K;;+I,r' g:=K-K;;+I.r' Then (3.6)-(3.7) remain
valid for j = 0, ... , r - 2, but for the (r - 1)st derivatives we have

1
g(r-I)(O)= _g(r-II(l)= N-a~ and gtrl)(O)= _gtr-I)(l)= -a~,

which yields

S- (g(O), , glr- 1)(u + )) ~ s,

S+(g( 1), , g(r-I)(r_)) ~ s,

S-( g(O), , g(r-I)(O+)) = s,

S+(g( I), , g(r-I)( 1-)) =s.

Again, (3.8) holds. Since, for XE(O, 1),

1 2"- S - 1 11-1

g lr-I)(x)= __ aL +_ '\' (x-x)O _ '\' aL(x_l'L)ON0N L., . . k + L., k 'ok +'
k~ I k~ I

we obtain for a~ ~ liN that

Z",,-1I(0, I) ~ 2(n - s - 1) - 1 = N - 3,

and for at < liN that

Z,," - ,,( 0, I) ~ 2( n - s - 1) + I = N - I.

The first case is impossible, since Z,,(O, 1) ~ N - 1, so that

1
a L <_

o N (3.20 )

and Z" (0, 1) = N - 1 must hold. The same is obtained for g. Then,
proceeding in the same way as in the proof of Theorem 1.1, we deduce that
both g and g vanish in (0, I) at {r i } ;V~ll only, all these zeros are simple
and therefore for all x E [0, 1]

/K;;+ 1.r(X)/ ~ IK(;r)/

IK;;+ I. r(x)1 ~ IK(x)!

if r=4m+ I,

if r=4m-l,

with equality sign only for x = r i' i = 0, ..., N.

Case B: r = 2s. We compare K:; + 1 r with the monosplines Land [,
defined by (3.3) and (3.4). Define h:·=L-Q;;+I.r and h:=[-Q;;+I.r'
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then hand hare
{ } n-s {J:L}n-lYi i~l U 'oi i~l

vanish at {r j } ;-'=0'
J= r - 1 we have
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splines of degree r - I with simple knots in (0, 1)
and {Yi} 7:: u g~} 7:/, respectively. Both hand h
and satisfy (3.17) and (3.18) for J=I, ...,r-2. For

Further, the application of Lemma 2.1(iv)-(vi) yields

S-(h(O), , h(r-l)(a+ »=s-1 +15,

S+(h( 1), , h1r-1)(r_)) = s- 15,

s-(ii(O), ,h(r-l\O+ »=s-l,

S+(h(1), , h(r-I)(1-» = s,

(3.21 )

(3.22)

(3.23 )

(3.24)

where 15 = 1 if a~ > Ij(2N), 15 = ° if a~ < Ij(2N), and 15 E {O, I} if a~ =

Ij(2N) (i.e., the exact value of 15 is not known in this case). Using the
representation

we examine separately the cases a~ ~ Ij(2N) and a~ < Ij(2N). If
a~ ~ Ij(2N), we conclude by (3.25) that

Zh\'-\I(O, 1) <: 2(n - s) - 1 = N - 2,

and then (3.21 )-(3.22) and the Budan-Fourier Theorem yield

(3.26 )

If a~ < Ij(2N), then

ZhU-11(0, 1) ~2(n -s) + I =N,

and again from the Budan-Fourier Theorem and (3.21)-(3.22) we arrive at
(3.26). The verification that h is a spline of exact degree r - 1 is
straightforward for s> 1, while in the case s = 1, it turns out that h == 0, i.e.,
K~ + 1.2 == L (see [12], Corollary 1).
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Thus, in all cases we obtain that h can not have other zeros in (0, 1)
except {r j} ~=-Il , and these zeros are simple. Using the same reasoning, we
establish this for ii, too. The proof of Case B is completed by the same
arguments as before. I

Proof of Theorem 1.3. The proof of Theorem 1.3 is analogous to those
of Theorems 1.1 and 1.2. With N = 2n + 2 - r, we compare K:~ I. r with the
monosplines (3.1 )-(3.2) in the case of odd r, and with the monosplines
(3.3 )-( 3.4) in the other case. The error bound for R:~ I. r is the same as for
R:~ I. r' by arguments of symmetry. We omit the details. I

Proof of Theorem 1.4. For odd r and arbitrary p, the theorem follows
immediately from a comparison of the estimates of Theorems 1.1-1.3 with
(1.3 ).

For even rand p = 00, q = 1, it follows in the same way, because, in this
case, the infimum in (1.2) is attained for c=Br (I/4). I

Proof of Theorem 1.5. In the proofs of Theorems 1.1-1.3 we established
that the Budan-Fourier Theorem holds with an equality sign for the func
tions g, g, hand ii considered there. This forces their derivatives g(r- 1\
g(r-II, h1r - l ) and liIr-1) to have the maximal possible number of sign
changes in (0, 1), which will be used to establish the inequalities
(1.11)-( 1.14). We illustrate this for the Lobatto case only, the remaining
cases are proved analogously.

In the case r = 2s + 1, we have

(3.27)

(3.28 )

and, following the proof of Theorem 1.2, g(r -I) must have sign changes
from + to - at 2k/N, k=I, ...,n-s-I, and g(r-I) at (2k-I)/N,
k = 1, ..., n - s. Actually, the inequality (1.12) was already proved for 1= 0
(see (3.20)), and it follows from (3.27) that there must hold

1 2(k - 1)
N+ N I a~<O

O:s:;~\L<2k/N

for k=l, ...,n-s-I, (3.29)

I 21 ~ L-+-- f..., a >0
N N O,,;;,;,L,,;;21/N v

for 1= 1, ... , n - s - 1. (3.30)
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Similarly, from (3.28) we get

2(k-l)

N
L a;<O

o~';/·«2k-l)/N

for k = I, ..., n - s, (3.31 )

for 1= I, ... , n - s. (3.32)

It is easily seen that (3.29) and (3.31) are exactly the inequalities (1.11),
and (3.30) and (3.32) are exactly the inequalities (1.l2) for the Lobatto
case.

Analogously, for r = 2s ;:, 4 (for r = 2, the following holds with equality
sign in (3.33) and (3.34)) we consider

I 2 1/-,' ( 4k-I)O 1/-1 )
h(r-l)(x)=aL_-_~" x--- +" aL(x_J'L °

• 0 2N N L..' 2N L.. k' " k + '
k~1 + k~1

_ I 2 I/-s+1 ( 4k-3)O 1/-1

hlr-I)(x)=a~+2N-N k~1 x-m- + +k~lat(x-~i')~'

Since h(r-I) and h1r - l ) must change sign at (4k-l)j(2N) and
(4k - 3)/( 2N), respectively, there must hold

I 2(k - I) " L 0--- + L.. a >
2N N o~~,~'<14k-I)/12N) v

I 21 " L----+ L.. a <0
2N N O~~,~~141~1)/(2N) v

for k = I, ... , n - s,

for 1= I, ..., n - s,

(3.33 )

(3.34)

1 2(k - 1)
-2N+ N I a;<O

o~~,~«4k -J)/12N)

for k=I, ... ,n-s+l, (3.35)

__1 +2/_ L aL>O for l=l, ... ,n-s+l. (3.36)
2N N O~¢,L~141-J)/12N) v

Clearly (3.33) and (3.35) are exactly the inequalities (1.l3), and (3.34) and
(3.36) are the inequalities (1.14) for the Lobatto case. The proof of the
remaining cases is similar. Theorem 1.5 is proved. I

4. CONCLUDING REMARKS

1. It is well known (see, e.g., [17]) that the Peano kernels of the
optimal quadrature formulae in W;, (i.e., the monosplines of least Lq-devia
tion; cf. (2.5)) have maximal number of simple zeros in (0, 1), so that the
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optimal quadrature formulae are also Gaussian formulae for spaces of
splines with simple knots; however, since the optimal formulae are not
known, except in some special cases, it is also not known for which spline
spaces they are exact.

2. Theorem 1.4 does not cover all cases in which the Gauss type
formulae are asymptotically optimal. This follows from the following
theorem, which is a special case of the Theorems 1 and 2 in [9].

THEOREM 4.1. Let Q be a quadrature formula of the type ( 1.1), with non
negative H'eights and algebraic degree of precision at least r - 1. Then

(
1 )JI'C(Q, Wix)~Kjpl/(j+l) K, 0'(Q, W'x)

for 1~j ~ r - 1, where p = 1 for odd 1', p = 2 for even r, and K j are Favard's
constants (1.5).

In view of Theorem 1.4 and (1.4), this yields the following corollary.

COROLLARY 4.1. The Gauss type formulae related to the spaces S'-l. ,."
are also asymptotically optimal in Wi", for odd j with 1~ j ~ r - 1.

3. By taking the differences of (1.11) and (1.12), and of (1.13) and
(1.14), we obtain the following corollary.

COROLLARY 4.2. With * standing for G, Land RO, there holds

and

l/N<;'\,·<k/N

k-I-2
a*>---

v N for 0 ~ I < k ~ N and odd r ~ 3,

k-I-22: a * > for 1~ 1< k ~ N and even I' ~ 2.
(2/-11/(2N)<~,~«2k-l)/(2N) v N

For similar estimates for Gauss type quadrature formulae related to
spaces of polynomials (the standard case), see Forster [6].

A a consequence of Corollary 4.2 and Theorem 1.5, for odd r ~ 3 each
of the intervals ((k-2)jN, kjN) (1 [0, 1], k=l, ... ,N+l must contain at
least one node of the Gauss type formulae related to S, _ l. t'l' and the same
is true for even r ~ 2 and the intervals ((2k - 5 lj(2N), (2k - 11/(2N)) (1

[0,1], k = 2, ..., N + 1.
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